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Two invariant submodels of a spherically partially invariant model of gas dynamics called a special vortex are investigated: a steady- 
state model and a homogeneous submodel. A complete analytical description of them is given: all the invariant functions specifying 
the solution have a representation in terms of an auxiliary function and its derivatives. This function is the solution of the first- 
order ordinary differential equation for the steady-state special vortex and the Schwarz equation for the homogeneous special 
vortex. A qualitative description of the gas in the homogeneous special vortex is given. The characteristic feature of this motion 
is the formation of a gas cloud from the rarefied medium accompanying its motion towards the observer and the suhsequent 
dispersion again to a rarefied state (in the limit to a vacuum) at infinity. A barochronic homogeneous special vortex is fully 
described. It is proved that the special vortex is generated hy special initial data: the algebraic invariants of the Jacobian matrices 
of the velocity vector field depend solely on the invariant independent vdriahlcs of time and the radial coordinate. A representation 
of the invariants in terms of the parameters of the singular vortex is obtained. 0 2003 Elsevier Ltd. All rights reserved. 

Exact solutions associated with the group of rotations M(3) are interest by virtue of its position among 
the other subgroups of the Galilean group, which is the fundamental symmetry group of mathematical 
models in continuum mechanics. Spherically symmetric solutions in gas dynamics and hydrodynamics 
are classical and have numerous applications. Ovsyannikov [l] discovered the “special vortex”, a solution 
of the equations of hydrodynamics which is partially invariant with respect to the SO(3) group and for 
which the radial component of the velocity vector is spherically symmetric, but the component of the 
velocity vector which is tangent to the spheres is non-zero. The name of this solution is explained by 
the fact that a vortex having, in spherical coordinates, a zero radial component everywhere on a sphere, 
apart from its poles at which it becomes infinite, corresponds to the special initial distribution of its 
velocity field. The term “special vortex”, by virtue of its brevity and expressiveness, is also transferred 
to the entire class of such solutions, which more accurately and lengthily can be called spherically partially 
invariant (symmetric) or SO(3) partially invariant solutions. This is a broad class of physically interesting 
exact solutions. The kinematics and dynamics of the gas motions corresponding to them are quite 
complex. On account of this, it is of interest to investigate the exact solutions of this submodel, in 
particular, the invariants, for a more detailed description of the motion. 

A general description of a special vortex is given in Section 1: the reduction of the equations of gas 
dynamics to invariant and overdetermined systems and the adduction of the latter into an involution 
(the derivation of the compatibility conditions). The overdetermined system is integrated in final form 
in the solutions of the invariant system. 

The property of the Jacobian matrix of the velocity vector field of a special vortex of having algebraic 
invariants and eigenvalues, which depend solely on invariant independent variables, is proved in Section 
2. This gives an invariant characteristic of the solution, which is independent of the formulae of the 
representation. This property is general for a wide class of regular partially invariant solutions. 

A steady-state special vortex is described in Section 3. The invariant system for this vortex reduces 
to a first-order ordinary differential equation and finite relations which express all of the required 
functions in terms of its solution. A steady-state vortex is defined outside a sphere of radius t’* > 0. 

A homogeneous special vortex for a polytropic gas is investigated in Sections 4 and 5. In this case, 
the invariant subsystem reduces to an inhomogeneous Schwarz equation for the auxiliary function 1%. 
All of the required functions are expressed in terms of it and its derivatives. For this solution, the 
invariants of the Jacobi matrix of the velocity field and the eigenvalues depend solely on time. 

It is proved in Section 6 that, in the case of an adiabatic exponent y = S/3, the Schwarz equation, 
which is of the third order, decomposes into a non-linear first-order equation and a second-order linear 
equation, the solution of which determines the right-hand side of the non-linear equation. This result. 
which is of a general nature, serves as a basis for studying the qualitative properties of the gas motion 
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in a homogeneous special vortex, which are described in Sections 7 and 8. A stage in which there is a 
condensation of a gaseous formation (a cloud), formed from the rarefied medium as it approaches an 
observer, and a subsequent stage of dispersion and rarefaction, are characteristic for the gas motion 
in a special vortex. Both finite and infinite intervals of existence of the solution are possible. 

A barochronic homogeneous special vortex is investigated in Section 8. A description of the trajectories 
of the gas particles as rectilinear generatrices of the three-dimensional unparted hyperboloid in the 
space of the events lR4 (t, x) and the collapse manifold is given for this vortex. 

1. THE SUBMODEL OF A SPECIAL VORTEX [l] 

Spherical coordinates (r, 8, cp) using the formulae 

x = rsinecoscp, y = rsinesinrp, z = rcose (1.1) 

and the components of the velocity vector (U, V, W) are introduced in the space l@(x) together with 
the Cartesian coordinates x = (x, y, z) and the corresponding components of the velocity vector 
u = (u, v, W) [2]. On the spheres r = const, the radial component of the velocity U is equal to the 
magnitude of the normal component of the velocity vector, and the vector u, = (V, W) is its tangential 
component. In a plane, which is tangential to the spheres, it is convenient to introduce the modulus 
u,: H = J(p + W2) and the angle o of its deviation from the meridian (Fig. 1) 

V = Hcoso, W = Hsino 

In the coordinates (1.1) and (1.2), the equations of gas dynamics have the form 

DU + P-‘/J, = r-‘H2 

(1.2) 

DH2 + 2(p)-‘H(cosopO + (sine)-‘sinwp,) = -2r-‘UH’ 

Do + (pr)-‘(( sine)-‘cosop, - since& = -r-‘HctgChino 

Dp+pdivu = 0, DS = 0, P = f(p, 9 

(1.3) 

where p is the density,p is the pressure and S is the entropy of the gas. The functionf specifies the 
equation of state of the gas. The operators D and div have the form 

D = a,+va,+~-‘H(cosoa,+(sine)-‘sinwa,) 

divu = re2(r2U),+ (rsine)-‘((Hcosocost3), + (Hsino),) 
(1.4) 
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Equations (1.3) for an equation of state of general form allow of the Lie algebra LH (Galfiean algebra, 
expanded by a uniform extension of the variables (t, x)). The SO(3) algebra, which corresponds to the 
group of rotations W(3), is a subalgebra of L ii and, in the coordinates (1.1) and (1.2), has the basis 

x= -sin@, - cos<pctgea, + (sir&)-t coscpa, 

Y= coscpa, - sin<pctgC@, + (sine)-* sincpa, (1.5) 
z = a9 

In the basis space of the variables (t, r, 8, cp, U, H, o, p, S), the SO(3) algebra with the operators (1.5) 
has the invariants t, r, U, H, p and S. The quantity w is an extraneous function. Hence, the SO(3) algebra 
with the operators (1.5) generates regular partially invariant solutions of Eqs (1.3) of rank 2 and defect 
1. In the case of these solutions, the invariant functions U, H, p and S depend solely on the invariant 
independent variables t, r, 8, cp. The representation of the required regular, partially invariant solutions 
has the form 

U = f-‘(c r). H = N(t, r), p = p(t, r), S = S(t, r), co = co(t, r,e, cp) (1.6) 

After substituting representation (1.6) into system (1.3), factor equations are obtained which, according 
to the general theory [3], decompose into an invariant subsystem 

D,CJ+ p-‘pr = r-‘H2, D,(rH) = 0, DOS = 0, p = f(p,S) (1.7) 

where Do = 3, + U& and an overdetermined system for the function o 

ksintID,w + sinBcosooa + sinww8 = -cosesino 

sin0sinoos - ~0~00~ = cOsecOsO + hsinfj (1.8) 

The auxiliary invariant functions 

k = r/H, h = k(peLDop+ r-‘(r21J),) (1.9) 

have been introduced here. It is assumed that H # 0. If H = 0, then by virtue of relations (1.2), the 
tangential component u, of the velocity vector is equal to zero. In this case, system (1.3) describes the 
well-known spherically-symmetric motions of a gas. 

To overdetermined system (1.8) is compatible by virtue of the equation 

kD,h = h2+1 (1.10) 

Equation (1.9) and (1.10) supplement the invariant system (1.7) to form a closed system in the functions 
U, H, p, S and h. System (1.8) (1.10) exists in an involution and its general solution depends on a single 
arbitrary function of two variables. 

New independent variables are introduced: the Lagrangian coordinate 5 = c(t, r) and the modified 
time r = z(t, r) in accordance with the equations 

D& = 0, &O, r) = r, kD,z = 1, ~(0, r) = 0 (1.11) 

Then, kDO = a,, and the solution of (1.10) with .the condition h(0, r) = 0 has the form h = tg r. The 
quantity 

q = cosrsinecosw- sinzcose (1.12) 

is defined and the quantity 5, which is implicitly defined by the relation 

Jgsin(t; + (9) = c0s~c0sec0s0 + sinzsine (1.13) 

The general solution of system (l.S), expressed implicitly, has the form 

with an arbitrary function F. 



354 A. I? Chupakhin 

The behaviour of spherical trajectories of gas particles (the projections of trajectories onto the unit 
sphere) has been previously described [ 11 and it has been proved that any of them is a large circumference 
of a sphere and that the rate of translation of a particle along it, with respect to the time r, is equal to 
unity. The value o. = n/2, which satisfies the conditions of uniqueness and definiteness of the solution 
on the whole sphere, is picked out among the initial data for the Cauchy problem. 

The representation of the complete pattern of the motion of a special vortex is thereby reduced to 
determining the radial motion of the gas particles, which is described by system (1.7) (1.9), (1.10). This 
system has been integrated [ l] in two cases: in the case of steady flows of an incompressible fluid 
(p = const) and the self-similar motions of a gas with an equation of stagep = Ap + B (A and B are 
constants) for which U = 0. The problem of the complete group analysis of a system which describes 
the radial motions of a gas has also been formulated. A description of a homogeneous special vortex 
in an ideal incompressible fluid is given in [4]. 

2. INITIAL DATA AND THE JACOBI MATRIX FOR A 
SPECIAL VORTEX 

As a rule, invariant and partially invariant solutions have special initial data. For instance, the Jacobian 
matrixJ = au/ax of the velocity field u = u(t, x) in barochronic motion has algebraic invariants at all 
instants of time which depend solely on the time [5] and, consequently, in the case of barochronic 
motions, the initial velocity field possesses the property that the algebraic invariants of the matrix 
./a = au&x are real constants. It turns out that a similar property also holds in the case of a special vortex. 

We will recall the formulae specifying a Jacobi matrix J = (Viu’) of the velocity vector field 
u = (U, V, W) in spherical coordinates (r, 0, cp) in terms of covariant derivatives [6] 

ur u,-v U, - Wsine 

vpj = r-+7, r-‘(& + U) ?(v, - wcose) (2.1) 

(rsine)-’ W, (rsine)-’ W, r-l( W,lsin8 + U + vctge) 

The following assertion holds. 

Theorem 1. The algebraic invariants of the Jacobi matrix (2.1) of the velocity field of the special vortex 
(1.2) (1.6) are functions of only the invariant independent variables t and Y and are represented by the 
formulae 

k, = r-2(r2U),- r-‘hH (2.2) 

k, = &VJ2),+ F+HH,-~-‘~HU,-~-~~UH (2.3) 

k, = f2( U - hH)( UU, + HH,) (2.4) 

Proof. We recall that an algebraic invariant kj of order i of a matrixJ is the sum of the principal minors 
of order i. So, for example, kl is the trace of the matrix and k3 is the determinant of J (in the case of 
three-dimensional matrices). 

We now calculate the first invariant for the solution (1.2), (1.6) 

k, = divu = k,o+k,, (2.5) 

k 10 = f2(r2U),, k,, = (rsine)-‘H(( cososinf3)a + (sine),) 

In order to do this, we rewrite the equation of continuity in the form 

D,lnp+ k,o+k,l = 0, Do = a,+ Ua, P-6) 

The sum of the first two terms in equality (2.6) is equal to h/k by virtue of the second equality of (1.9) 
and, consequently, kll = - h/k. On substituting this value of kll into equality (2.5) and using the first 
equality of (1.9) we obtain formula (2.2). 
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Formulae (2.3) and (2.4) are proved by direct calculation but this is far more tedious. It essentially 
uses the second equation of the overdetermined system (1.8) for the extraneous function, that is, 
formulae (2.3) and (2.4) hold by virtue of the second equation of system (1.8). 

Curollmy. This initial data for a special vortex are special and the Jacobian matrix of the initial velocity 
field has algebraic invariants which depend solely on r. 

In the case of regular partially invariant solutions of the type (1,l) and (1,2) of the equations of gas 
dynamics’, the Jacobi matrix of the velocity field possesses the property formulated in Theorem 1. This 
enables us to propose the following hypothesis: for all regular partially invariant solutions, the Jacobi 
matrix of the vector velocity field has algebraic invariants which depend solely on the invariant 
independent variables. 

Remarks. 1. This property of the matrix J picks out in an invariant manner the class of initial data of the 
corresponding solution. 

2. The property is verified by explicitly calculating the invariants of the Jacobi matrix for all solutions.? It is 
interesting that it, unlike the formulae for the representation of the solution, has an invariant formulation. 

A knowledge of the eigenvalues of the matrix J is also useful when analysing the solutions. 

Lemma 1. The eigenvalues & of the Jacobi matrix (2.1) of the velocity field of a special vortex (1.2), 
(1.6) are functions of only the invariant independent variables t and r and are represented by the following 
formulae 

h, = r-‘(U-hH) 

h 2,3 = ;(U,+r-~U*((U,-r-‘u)2-4r-*HH,)1’2) (2.7) 

In fact, substitution of expressions (2.7) into the representation of the invariants 

k, = h,+h2+&, k, = klh2+h,h3+h2h3, k, = 3L13L2h3 

leads to formulae (2.2)-(2.4). 

3. A STEADY-STATE SPECIAL VORTEX 

System (1.7), (1.9), (MO), which describes the radial gas motions, allows of a Lie algebra with the 
operator T = 13,. Solutions, which are invariant with respect to this algebra, can be constructed at once 
as the regular, partially invariant solutions of the equations of gas dynamics (1.3) with respect to a 
subalgebra with the basis T, X, Y, Z (see the paper cited in 111. These solutions are of rank 1 and defect 
1 and are represented in the form 

u = U(r), H = H(r), p = p(r), s = S(r), 0 = o(r,tl,cp) 

Substituting these expressions into Eqs (1.7) and (1.10) we obtain the equations 

UU’+p-‘p’ = r-‘H2, U(rH)’ = 0, US = 0, kUh’ = h2+ 1 

k = rlH, h = k[ U( lnp)’ + r2(r2U)‘] 

(3.1) 

(3.2) 

where a prime denotes a derivative with respect to r. 
It follows from system (3.2) that U f 0 (in the case when U = 0, the last equation of (3.2) leads to a 

contradiction). Consequently, the submodel describes the isentropic motions of a gas, S = const. It 
follows from the second equation of (3.2) that rH = r$&,, where ro, Ho = const. We put a0 = r,#&. Then 
k = p/a0 and the representation 

u = a&h2 + I)lr2h (3.3) 
follows from the fourth equation of (3.2). 

t Non-barochronic submodels of types (1,2) and (1,l) of the equation of gas dynamics. Preprint No. A-99. Inst. Gidrodinamiki, 
Sib. Otd., Ross. Akad. Nauk, Novosibirsk, 1999. 
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Substituting expression (3.3) into the last formula of (3.2) for h and integrating, we obtain 

p = R,lh’lIJ1+;;2 (3.4) 

where the constant Rc > 0. Consequently, all of the required functions are represented in terms of the 
function h(r) and its derivatives. The pressure is determined from the equation of state. The function 
h is a solution of the first equation in (3.2) which is integrated once 

2 

g12+l(p)+ao = b, 
2r2 (3.5) 

where I(p) = /dplp is the enthalpy of the gas and the constant b0 > 0. 
Equation (3.5) is an invariant Bernoulli integral. In the case of a gas with a polytropic equation of 

statep = py (y > 1 is th e a la a ic exponent), relation (3.5) takes the form d’ b t’ 

a; - 2bor2 2 e+3)12 

Ih’lY+‘+~ 2r2 (1 +h2)(Y-“‘2h’2+mo(1+h ; = 0 
r 

K = f’(y - l)R,, m. = (a;K)/% 

The function h = h(r), the solution of Eq. (3.6), determines the radial component of the velocity and 
the density in accordance with formulae (3.3) and (3.4). It also occurs in the integrals of 4, TJ and <, 
which determine the spherical motion of the gas particles. Hence, the determination of a steady-state 
special vortex reduces to the integration of Eqs (3.6) 

Put 
r* = ao~~ (3.7) 

It follows from the Bernoulli integral (3.5) that a steady-state special vortex is defined when r 3 r*, 
rather than in the whole of space. As in the case of a gas source, a steady-state special vortex cannot 
be of a point character: the quantity r* (3.7) determines the minimum radius of the sphere from which 
the steady-state special vortex “emerges”. This property also holds in the case of a steady-state special 
vortex in an ideal incompressible fluid [l]. 

4. A HOMOGENEOUS SPECIAL VORTEX (A POLYTROPIC GAS) 

We will now consider a gas with a polytropic equation of statep = Spy. The invariant subsystem (1.7), 
(1.9), (1.10) admits of a Lie algebra, which is specified by the extension operator 

K = ra, + ua, + Ha, + apa, + (a + 2jpa, (4.1) 

with an arbitrary parameter a E R. The variable t is an invariant of the operator K and, using it, it is 
possible to construct an invariant solution of rank 1, which has the representation 

u = NW, H = C(t)r, p = r”R(t), p = ra+‘P(t) (4.2) 

The representations for the entropy 

S = rms(t), s(t) = PR-‘, m = 01+2-sly (4.3) 

and the speed of sound 

c2 = ypfp = yr2B, B = R-‘P (4.4) 

follow from the equation of state. The invariant functions (4.2)-(4.4) are homogeneous with respect 
to the variable r, which provides a basis for calling this solution a homogeneous special vortex. 
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The formulae 

p-‘vp = (a+ 2)Bx, p-‘p, = (a+ 2)Br (4.5) 

hold in the case of solution (4.2). In this case, all the functions of time A, C, R and P in (4.2), which 
determine the invariant part of the solution, are also expressed in terms of the function h and its 
derivatives (the special potential of the solution). The function h(t) satisfies a third-order ordinary 
differential equation, the Schwarz equation with a definite right-hand side [7]. As before, the extraneous 
function o is determined from the final relation of (1.14) after the function h has been found. 

We will now obtain representations of all of the invariant functions (4.2) in terms of the functions h 
and its derivatives and derive an equation for h. In this section, a prime denotes a time derivative of 
the required functions. 

On substituting the representations for H and U into the second equation of (1.7), we obtain 

A = -C’l(2C) (4.6) 

For the function (4.2), 

p-‘&p + r-*(r*U), = R-k + (a + 3)A 

Substituting this expression into formula (1.9) for h and taking account of the fact that k = C’~-‘, we 
obtain 

h = &,RC-(a+3)‘2]t (4.7) 

The representation 

follows from Eq. (1.10). 

C = h’l(1 +h*) (4.8) 

Substituting expression (4.8) into the equality (4.7), we obtain 

R = ,(,(1 + h2)4a+2)‘2(~)(a+3)12 

where R. is a constant of integration. 
Substituting expression (2.2) for div u and c* from (4.4) into the equation for the speed of sound 

D,c* + (y - l)c*divu = 0 

we obtain 

B’lB-UC-(y- l)jln(l +h2)1R?RJ’ = 0 

Integrating this equation once, we obtain the representation 

B = B,( 1 + h2)-‘(h,f3y- ‘)‘* (4.10) 

where B0 = const. It is more convenient to describe the solution by specifying c* instead ofp. Relations 
(4.4), (4.9) and (4.10) establish connections between these quantities in the given solution. We note 
that, from the physical meaning of the quantities p and c* and the representations (4.2), (4.4) and (4.9) 
(4.10), it follows that R. > 0, B. > 0. 

Formulae (4.6), (4.8), (4.9) and (4.10) give representations of all the required functions (4.2) in terms 
of h. The required equation for h is obtained from the first equation of (1.7) which, after substituting 
representation (4.2), is transformed, by virtue of (4.3, into the Riccati equation for A 

A’+A*+(a+2)B = C* (4.11) 

Substituting the representations forA, B and C in terms of h into Eq. (4.11), we arrive at the required 
Schwarz equation. We will formulate the final result in the form of an assertion. 
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Theorem 2. The submodel of a special vortex, which is invariant with respect to the algebra (4.1) is 
given by the representation of the invariant functions (4.2) - (4.4) in which the functions A, B, C and 
R are expressed in terms of the auxiliary function h using the following formulae 

A = -;(ln-$)‘, B = B,( 1 + h2)-Yjh’1(3y-1)‘2 

C = (1 + h2)-‘h’ , R= Ro( 1 + h2j-(a+ 2)12,h,,(a+ 3)/2 
(4.12) 

Where y > 1 is the adiabatic exponent, a E Iw is the parameter of the submodel and B,, > 0 and 
R0 > 0 are constants of integration. The function h(t) is the solution of the Schwarz equation 

111 3 h” 2 ,(31-1)/2 
{h}+-&) = 2(c~+2)B,‘~’ 

(1 +h2f 
(4.13) 

The subsequent investigation of a homogeneous special vortex reduces to an analysis of the solution 
of Eq. (4.13). Unfortunately, there are only a few results on the representation and qualitative properties 
of its solution. 

5. ALGEBRAIC INVARIANTS OF THE JACOBI MATRIX AND INITIAL 
DATA FOR A HOMOGENEOUS SPECIAL VORTEX 

In the case of a homogeneous special vortex, Theorem 1 takes a more specific form. 

Lemma 2. In the case of the homogeneous special vortex described in Theorem 2, the algebraic 
invariants and the eigenvalues of the Jacobi matrix are solely functions of time and are given by the 
formulae 

k, = 3A-hC, k2 = 3A*-2hAC+C* 
(5.1) 

k, = A3-hA2C+C2A-hC3 

h, = A-he, ha3 = AfiC (5.2) 

Actually, substitution of the representation of the solution (4.2) into formulae (2.2) - (2.4) and (2.5) 
gives expressions (5.1) and (5.2). 

Formulae (5.2), had using the function h, which defines the homogeneous special vortex, have the 
form 

h, = -;(lnlh’l)‘, A,,, = -(;ln’“’ 
1 +h2 

Remark. The initial data for a homogeneous special vortex are specified by special Jacobi matricesJo with constant 
invariants. The matricesJ have invariants at all instants of time which depend solely on time. However, these matrices 
differ from the Jacobi matrices determining the barochronic solutions, since they satisfy different Riccati matrix 
equations. 

The search for a solution of the form of (4.2) reduces to the solution of the Schwarz equation (4.13). 
We will now show that the initial data for it, 

h, = h(O), h; = h’(O), h; = h”(O) (5.3) 

which are arbitrary constants, are expressed in terms of the initial physical data 

UO = NO, x). po = p(0, x), q-J = 40, x) 

of solution (4.2). 
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Expressions for the initial physical data of the solution 

Z/, = A(O)r, V, = C(O)rcoso,, W, = C(O)sino,-, 

pa = raR(0), tzi = yr2B(0) 
(5.4) 

with the constants A(O), C(O), R(O), B(O), follow from formulae (1.2) and (4.2). The function 00 = 
~(0, r, 8, cp) gives the initial data for system (1.8). 

We use formulae (4.12) in order to connect the initial data (5.3) and the numbers A(O), B(O), C(O), 
R(0) in (5.4). It is more convenient to use the representation h = tgz, where z = r(t) is the modified 
time (1.11). The derivatives h’ and h” are then uniquely expressed in terms of the function 7 and its 
derivatives and the initial data (5.3) are recalculated in terms of x0 = z(O), 6 = Y(O), ‘~6 = r”(O). Equation 
(4.13) can be rewritten for the function z. As before, it will be a solution of the Schwarz equation but 
with a modified right-hand side. Specific formulae are not very important here but it should be 
emphasized that the initial data (5.3) are expressed in terms of the initial physical data (5.4) for a 
homogeneous special vortex 

COST0 = = C(O), z; = -ZA(O)C(O) 

6. INTEGRALS OF THE SCHWARZ EQUATION WHEN y = 513 

The case of an exclusive value of the adiabatic exponent is distinguished from the point of view of the 
integration of the Schwarz equation, which takes the form 

(h) = 2(a + 2)B,h’2/( 1 + h2)5’3 (6-l) 

Lemma 3. The function h = h(t), which is a solution of the Schwdrz equation 

{hl, = @(h)h; (6.2) 

(@(II) is a given function), is related by the equation 

h;(C, i- C2r)2 = Q’(h) 

(C, and C2 are constant) to the solution Q = Q(h) of the linear equation 

d&-i@(h)Q = 0 
dh2 * 

(6.3) 

(6.4) 

Proof. By well-known results in [7,8], we have the following chain of equalities. Equation (6.3), after changing 
the roles of the variables, takes the form 

{flh = -O(h) (6.5) 

Suppose rl: > 0. Then, the general solution of Eq. (6.4) is represented by the formula 

Q= $C, + C,r(h)) (f4 

where r = t(h) is the general solution of Eq. (6.5) and C,, C2 are arbitrary constants. On transforming the relation 
/ = r(h) and squaring both sides of equality (6~9, we arrive at relation (6.3) 

Coroby. The critical points t* of the function h = h(t) give the zeros of the function Q = Cl(h) and 
the values of h for which h’(t,) = 0 make Q vanish: Q(h) = 0. 

The proof follows from relation (6.3). 
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7. A QUALITATIVE DESCRIPTION OF THE RADIAL MOTION OF 
A GAS WHEN y = S/3 

Reduction of the Schwarz equation (6.1) to Eqs (6.3) and (6.4) enables us to describe the radial motion 
of a gas. Integrating the equation of the trajectories drldt = U in the case of the function U (4.2) WC 
obtain 

2 2 -1 2 r(l+h) h’=roCo (7.1) 

where ro, Co = C(0) are constants of integration. Formula (7.1) determines the Lagrange coordinate 
5 = r(C~“2(l.ll) forth e given solution. Equation (7.1) yields the contact characteristic for the given 
solution, that is, it determines the surface which is “woven” from the trajectories. It is a surface of rotation 
about the Ot axis in the space of events R4(t, x) which envelopes a family of spheres with centres at 
points of the Ot axis and radii given by Eq. (7.1): 3(t) = @,/C(t). 

We will now calculate the values of the density and the speed of sound in a particle, that is, when 
r = r(t) which is determined by Eq. (7.1). We obtain 

P = ‘o~olcol 
315 lh’13’2 2 5 2 - c = pc, WI 

1 +h2’ (1 +h2)3n 
(7.2) 

It follows from Eq. (7.1) that the pattern of the gas motion is determined by the number of critical 
points of the function h(t). Actually, according to Eq. (7.1), r --+ +m in the case of a differentiable 
function h when t -+ t*, where t* is the critical point of the function h at which h’(t,) = 0. 

It follows from formulae (7.2) that a critical point of the function h is a vacuum point: p(t*) = 
c(th) = 0. According to integral (6.3), the critical points of the function h coincide with the zeros of 
the function Q(h), which is a solution of Eq. (6.4). It follows from general theory [9] that the number 
of zeros of the solution of second-order linear equation (6.4) depends on the sign of the coefficient CD. 
For Eq. (6.1), 

<p = 2(cx+2)8 (1 +h2)-5’3 0 

Consequently, sign @ = sign (a + 2), since B. > 0, by virtue of relations (4.4) and (4.12). 
We will now examine possible cases. 
A. Suppose @ > 0 that is, a + 2 > 0. Each non-zero solution of Eq. (6.4) then has no more than a 

single zero and, consequently, it is non-zero for all sufficiently large values of h. 
In this case, the function h(t) has no more than a single critical point h’(t,) = 0 when t = t* such 

that Q(h,) = 0 for h, = h(t,). The qualitative behaviour of the functions h = h(t) and Q = Q(t) in this 
case is shown in Fig. 2. It follows from relations (7.1) and (7.2) that r + +m, c -+ 0, p + 0 when 
t + t*. The solution is defined in the intervals ( -00, t*) and (t*, +-). Gas particles depart to infinity 
when t 4 t* +O and, at the same time, the density of the gas cloud decreases, tending to the limiting 
state of a vacuum (Fig. 3). 

B. Suppose <D < 0. that is, a + 2 c 0. Each non-trivial solution Q(h) of Eq. (6.6) as well as its derivative 
then has infinitely many zeros, that is, each solution contains an infinite set of oscillations while, at the 
same time, the distances between neighbouring zeros remain bounded. 

Suppose hi = h(ti), i E N are the zeros of the solution: Q(hi) = 0. Then, at the critical points ti, we 
have h’(tJ = 0 (Fig. 4). According to equality (7.1), the gas particles depart to infinity: r -+ +w when 
t -+ tie At the same time, c(tj) + 0, p(ti) + 0. The gas motion is determined in each of the intervals 
(ti, ti + t) and is described in the following manner. A rarefied gas cloud (t = ti), on condensing, 
approaches an observer at a minimum distance rmi,, and then moves away from him, dispersing to the 
limiting state of a vacuum at infinity when t = ti + i (Fig. 5). The contact characteristics, that is, the 
surfaces in R4(t, x), completely consisting of the trajectories, are surfaces of revolution about the Ot 
axis, the generatrices of which are shown in Figs 3 and 5. 

A complete description of the gas motion is possible when Eq. (1.4), which specifies the motion of 
the particles on the spheres r = const, is taken into account, and this motion is added to the radial 
motion. It has been shown in [ 1] that, in a special vortex, each gas particle during its motion does not 
leave a plane, the position of which in the space Iw4 (t, x) depends on the initial data: the position and 
velocity of the gas particle. On the whole, these solutions describe the motion of a gas cloud which is 
formed at sufficiently large r from a rarefied gaseous medium. The types of motion A and B which have 
been described above are distinguished by their times of existence: infinite in case A, since the solution 
is defined in the interval (a-, t*) or (t*, +-), but finite (ti, ti + i) in case B. 
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A more detailed description of the motion is associated with the existence of simple particular 
solutions of the Schwarz equation and an analysis of the solutions of Eq. (1.14) in the case of specific 
functions F. 

8. THE BAROCHRONIC HOMOGENEOUS SPECIAL VORTEX 

The Schwarz equation (4.13) when CI = -2, and for any y. has the simple general solution 

h = (at+b)/(ct +d) (8.1) 

in which the constants of integration a, b, c and d are such that A = ad - bc f 0 are related by a single 
condition. We shall determine it later so that the formulae representing the solution have the simplest 
form. The function (8.1) defines a non-isentropic, barochronic solution of the equations of gas dynamics 
since it follows from relations (4.2) and (4.3) that 
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P = P(t), p = r-2R(r), S = r4YPR-Y 6-w 

Solution (8.2) can be called a barochronic, homogeneous special vortex. The mathematical foundations 
of the theory of the barochronic motions of a gas have been described earlier [.5]. The barochronic motion 
of a gas has the following characteristic features.7 

1. The gas particles move along rectilinear trajectories, the velocity of the particles is constant along 
the trajectories, but is different for different gas particles. The special initial data which guarantees such 
a motion is referred to in Section 2. 

2. The trajectory mapping which compares the initial position of each particle with its position at 
an instant of time t > to degenerates at a certain finite instant of time t = t,. This corresponds to a 
collapse of the density: p + + 03 when t + tc in the manifold &,, the dimension of which is less than 
the dimension of the motion. For instance, during the barochronic motion of a bounded gas volume it 
collapses when t = tc into a part of a surface, a curve or a point depending on the degree of degeneracy 
of the trajectory mapping. Physically, the motion can be treated as an ultrastrong compression of a gas 
by a piston of special configuration formed by the contact characteristics, the pressure on which changes 
with time according to a specified law. 

Suppose the condition imposed the constants a, b c and d, about which we have spoken above, has 
the form ab + cd = 0. The numbers a, c and 00, such that 

b = -croc, d = q,a, A = oo(a2+c2) 

can be chosen as the three essential constants on which the solution depends. Formulae (4.2) which 
give the solution in the case of a function h of the form of (8.1), take the form 

U = rtl(t*+(~~), p = IA)‘“l(r2\ct +dJ) (8.3) 

The equations of the radial motion of the gas particles drldt = U are integrated: 

(r/r~)2-(tlcro)2 = 1 (8.4) 

The motion of the gas particles in the space R4 (t, x) takes place along the rectilinear generatrices 
of the unparted hyperboloid of rotation, which is given by Eq. (8.4). It is the enveloping surface of a 
family of two-dimensional spheres with centres at points on the Ot axis and radii 

There are two families of rectilinear generatrices for a unparted hyperboloid. The gas particles move 
along the generatrices of the first family in the direction of the increase in time into the future and, 
along the lines of the second family, in the direction of the increase in time into the past. The equations 
of gas dynamics are invariant under time reversal: t + -t, u + -u. This involution changes the places 
of the generatrices of the two families. The initial data for each gas particle are specified by Lagrange 
coordinates, that is, the position of the particle on the hyperboloid and the velocity which is kept constant 
along the trajectories of the particles. The complete motion of the gas is made up of the radial motion 
described above and a spherical motion described by integral (1.14). The motion of a gas, occupying, 
when t = 0, a sphere of radius ro, can serve as an illustration. In all of the following instants of time, 
the gas, while expanding according to the law (8.3) also occupies a sphere of radius (8.5) (Fig. 6). 

In order to describe the collapse in such a motion, which sets in when t + t, = -d/c, it is necessary 
to include Eq. (1.14) for the spherical motion. We will consider the special case of the motion of a gas 
which is independent of the length cp. Equation (1.14) for the function w then takes the form 

sinecoso = hcose + A/SF(~) (8-6) 

It follows from this equation that the function F of the Lagrangian variable 5, which is determined by 
the initial gas distribution, cannot be arbitrary and only obeys the condition ] F ] G 1. Actually, the relation 

jCHUPAKHIN, A. I?, Barochronics motions of a gas. General properties and submodels of types (1, 2) and (1, 1). Preprint 
No. 4-98. Inst. Gidrodinamiki, Sib. Otd., Ross. Akad. Nauk, Novosibirsk, 1998. 
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Fig. 6 

sin(8-v) = F, v = arctgsa 

from which the constraint on F mentioned above follows, is a consequence of Eq. (8.6). 
Substituting function (8.1) into equality (8.6), we obtain 

Ict + dJ sinf3coso = &(at + b)cose + dm(t2 + &J1’*F(~) 
(8.7) 

E = sign(ct+d) 

Equation (8.7) specifies the function o = ~(t, r, 0) at any instant of time t # t,. When t = t,,, its Ieft- 
hand side vanishes and it only relates the independent variables, defining one more equation of the 
collapse manifold. Consequently, the collapse manifold is a one-dimensional curve and is given in the 
space of events R4 (t, x) by the equation. 

C,: t = t,, r = r,, 1 +ai2tf!, ~0.~0 = &F(k) d (8.8) 

The manifold & lies in a two-dimensional sphere and, in the general case, is part of an arc 
8 = 0, which follows from expression (7.1) or the Lagrangian variable: 5 = ?C. Its form depends on 
the function F. 

9. CONCLUSION 

The qualitative analysis of the invariant submodels of a special vortex which has been carried out shows 
that, in these submodels, the corresponding motion of the gas can be studied more completely than in 
the general case. 

1. The equations of the radial motion of a gas reduce, in the case of these submodels, to a single 
ordinary differential equation which is specific for each of them. All of the invariant functions are 
represented in terms of the solution of this equation, that is, the function h and its derivatives. For a 
steady-state special vortex, this equation is of the first order, but is not self-similar and is not integrated 
in quadratures. An investigation of the qualitative properties of this solution is a separate problem. It 
has been proved that a steady-state special vortex is defined when r 2 r* > 0, rather than in the whole 
space. 

In the case of a homogeneous special vortex, the equation for h is the Schwarz equation with a right- 
hand side which is rational with respect to h and h’. For any adiabatic exponent y = 5/3, the equation 
“decomposes” into two equations: a non-linear first-order equation and a linear second-order equation, 
the solution of which gives the right-hand side of the first equation. Oscillating and non-oscillating 
solutions of the second equation have been investigated. The motions of a gas cloud correspond to these 
solution. This cloud is formed at a considerable distance from an observer from a rarefied medium and 
approaches him at a certain minimum distance after which the stage of withdrawal and rarefaction of 
the cloud begins. Finite or infinite time intervals of the existence of the solution correspond to different 
forms of the solution. 

A barochronic homogeneous special vortex has been completely described. 
2. It has been proved that a special vortex possesses an interesting property. The algebraic invariants 

of the Jacobi matrix J of the velocity field of this solution depends solely on the invariant independent 
variables. Representations for them and for the eigenvalues of J have been found. In the case of the 
matrix& of the initial velocity field, the invariants depend solely on r. The hypothesis has been formulated 
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that a similar property holds for all regular partially invariant solutions. The description of vector fields 
of such a form is interesting. This has only been done in the case of barochronic solutions for which 
the matrix Jo has constant invariants [5]. 

3. To describe the submodels of a special vortex, the two-sphere algorithm for constructing the exact 
solutions is equivalent to the single-sphere model. Steady-state and homogeneous special vortices can 
be constructed as partially invariant submodels with respect to four-dimensional subalgebras of the 
algebra of the symmetry of the equations of gas dynamics after one step and, also, as invariant submodels 
of a special vortex, after two steps. In the case of invariant solutions, the conditions for the single-step 
and multistep algorithms to be equivalent were established by Ovsyannikov [lo] (the LOT lemma). These 
conditions are still unknown in the case of partially invariant solutions. Preliminary considerations show 
that they will not be very different from the conditions of the LOT lemma. For instance, in the case of 
the Lt3 algebra, which is allowed by the equations of gas dynamics in the case of a polytropic gas with 
an arbitrary adiabatic exponent y, the invariant subsystem of the special vortex admits of an algebra 
which is a factor algebra of the normalizer of the algebra L3 = (X, y 2) in L13. This algebra has the 
basis of operators 

a,, ta, + xax, ta, - Ua, - 2pa,, pap + pap 

A steady-state special vortex is generated by the algebra (a,), and a homogeneous special vortex is 
generated by the operator (4.1), which is a linear combination of three dilatation operators from L.+ 

The complete list of invariant and partially invariant submodels of a special vortex can be obtained 
when investigating the group property of the equation from Section 1. A fraction of these submodels 
is contained in the optimal systems of subalgebras of the algebra of the symmetry of the equations of 
gas dynamics for a polytropic gas with an arbitrary adiatatic exponent y and with the exclusive value 
y = V3.t The investigation of these submodels is a challenging problem. 
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